
S

UNCLASSIFLED FILE rS P
srEuL. ! TV CLASS] F:,.A' ION Of IN:S PAGE lWhe,'D'A7Entered)

F REPORT DOCUMENTAIJON PAGE - vrrE% O"

1. REPORT hNLw8R 12. 60V1 ACCESSION NC. 3 RECIPliS'S CA A.O. bjm::i

. {(ubtrle) 6. TYPE Of REPO ' & PEi9:O COVERED

Ada Compiler Validation Summary Report:GEC Soi 15 JuJ 189 t,, I, itjl 190
care Ltd., VADS Version 5.5, SUN 3/50 Workstation (Host
:o GEC 4195 Minicomputer (Target), 880714N1.09135 e o;i' RjpOk. :

1. AUWIORis) 9. CIRA1l O& &RAN7 hjmj;Rjj

National Computing Centre Limited,
4 .anchester, United Kingdom.

PERfORMIG ORGANIZATION AND ADDRESS 1C. PRORAM ELEiNT. PROjE:I. TASKAREIA & WORK LOWI hu"BERS
N National Computing Centre Limited,
lanchester, United Kingdom.

1. CONTRO.LING OFFICE NAME Ah% ADDRESS 12. REPORT DATE
Ada Joint Program Office
United States Department of Defense 13. N MO
Washington, DC 20301-3081

14. MONITORING AGEN:.Y NAML & ADDRESS(Ifdierent from Controlling Ofice) 15. SECuRI v CLASS (olthasreport)

UNCLASSIFIED
National Computing Centre Limited, 154. C1[f _s5'ICATIOh'DOw%RA0IN I

Manchester, United Kingdom. N/A

16. DISTRIBjTIO% STATEMENT (ofthtsReporT)

Approved for public release; distribution unlimited.

17. DISTRIBTIO STATEdiNT (of thebsrcTenteied,-B;ock20 ifO ,feen, from Report)

UNZ,
I EE

-
DTIC

19. SL)PP.EMEh7ARI NOTES6218

19. KEYWORDS (Continue on reverse sodf dneres.ar onoodentif> b block number)

Ada Program-ming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and i entif) by block number)

GEC Software Ltd., VADS Version 5.5, Wright-Patterson AFB, SUN 3/50 Workstation under
SUN UNIX 4.2, Release 3.2 (Host) to GEC 4195 Minicomputer under OS4000 Release 4.17
(Target), ACVC 1.9.

DD #uJP 1473 EDITION or I NO. 65 IS OBSOLETE
I JAN 73 S100 VC 1 F 7*-id-f CC'F" '1

AVF Control Number: AVF-VSR-90502/34

Ada* COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 880714N1.09135
GEC Software Ltd
VADS Version 5.5

SUN 3/50 Workstation x GEC 4195 Minicomputer

Completion of On-site Testing:
15th July 1988

Prepared By:
The National Computing Centre Limited

Oxford Road
Manchester Ml 7ED
United Kingdom

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C. 20301-3081

* Ada is a registered trademark of the United States Government (Ada
Joint Program Office).

Ada* Compiler Validation Summary Report:

Compiler Name: VADS Version 5.5,

Certificate Number: 880714N1.09135

Host: Target:
SUN 3/50 Workstation under GEC 4195 Minicorputer under
SUN UNIX 4.2, OS4000 Release 4.17
Release 3.2

Testing Completed 15th July 1988 Using ACVC 1.9

This report has been reviewed and is approved.

The National Computing Centre Ltd
Jane Pink
Oxford Road
Manchester, Ml 7ED
United Kingdom

/J

A(da Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311 Accession For

iNTIS GFA&I
IDTTI TAB

I juzt I Cat ton

Ada ointPro r& Office By
ji'i;J.k.L L. ~ pry~u~-Dt-itributlon/

Director Jo e s P. 4-1 Av31ability Codes
Department of Defense Ivail and/or
Washington DC 20 D1it Special

* Ada is a registered trademark of the United States Government *(Ada
Joint Program Office).

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-1
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-5

3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-6
3.7.3 Test Site 3-6

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

Table of Contents Page 1 of 1

CHAPTER 1

INTRODUCTION

This Validation Summary Report -(VSP4) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results oftesi-ng this compiler using the Ada Compiler
Validation Capability, (ACVC).'- - An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent
features must conform to the requirements of the Ada Standard. The Ada
Standard must be implemented in its entirety, and nothing can be
implemented that is not in the Standard.',

Even though all validated Ada Compilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report."

- The information in this report is derived from the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an Ada
compiler and evaluating the results. ,The purpose of validating is to
ensure conformity of the compiler to the Ada Standard by testing that
the compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behaviour that is implementation dependent but permitted by
the Ada Standard. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

Chapter 1 Page 1 of 6

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on
an Ada compiler. Testing was carried out for the following purposes:-

To attempt to identify any lariguaae constructs supported by
the compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported
by the compiler but required by the Ada Standard

To determine that the implementation-dependent behaviour is
allowed by the Ada Standard.

Testing of this compiler was conducted by NCC under the direction of
the AVF according to procedures established by the Ada Joint Program
Office and administered by the Ada Validation Organization (AVO). On-
site testing was completed 15th July 1988 at GEC Software Ltd, 132-135
Long Acre, London WC2E 9AH.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:-
The National Computing Centre Ltd
Oxford Road
Manchester M1 7ED
United Kingdom

Questions regarding this report or the validation test results should
be directed to the AVF listed above or to:-

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

Chapter 1 Page 2 of 6

INTRODUCTION

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language, ANSI/MIL-STD-
1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January .987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compilcr to
the Ada programming language.

Ada An Ada Commentary contains all information relevant to
the point addressed by a comment on the Ada Standard.
These comments are given a unique identification number
having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and
technical support for Ada validations to ensure
consistent practices.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Chapter 1 Page 3 of 6

INTRODUCTION

Inapplicable An ACVC test that uses features of the language
test that a compiler is not required to support or may

legitimately support in a way other than the one
expected by the test.

Passed test An ACVC test for which a compiler generates the
expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding
a particular feature or a combination of features to the
Ada Standard. In the context of this report, the term
is used to designate a single test, which may comprise
one or more files.

Withdrawn An ACVC test found to be incorrect and not used
test to check conformity to the Ada Standard. A test may be

incorrect because it has an invalid test objective,
fails to meet its test objective, or contains illegal or
erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce compilation
or link errors.

Class A tests check that legal Ada programs can be successfully
compiled and executed. There are no explicit program components in a
Class A test to check semantics. For example, a Class A test checks
that reserved words of another language (other than those already
reserved in the Ada language) are not treated as reserved words by an
Ada compiler. A Class A test is passed if no errors are detected at
compile time and the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and produces a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when
it is executed.

Chapter 1 Page 4 of 6

INTRODUCTION

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a
compiler by the Ada Standard for some parameters--for example, the
number of identifiers permitted in a compilation or the number of units
in a library--a compiler may refuse to compile a Class D test and
still be a conforming compiler. Therefore, if a Class D test fails to
compile because the capacity of the compiler is exceeded, the test is
classified as inapplicable. If a Class D test compiles sucessfully,
it is self-checking and produces a PASSED or FAILED message during
execution.

Each Class E test is self-checking and produces a NOT APPLICABLE
PASSED, or FAILED message when it is compiled and executed. However,
the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE,
support are self-checking features of the executable tests. The
package REPORT provides the mechanism by which executable tests report
PASSED, FAILED, or NOT APPLICABLE results. It also provides a set of
identity functions used to defeat some compiler optimizations allowed
by the Ada Standard that would circumvent a test objective. The
procedure CHECK FILE is used to check the contents of text files
written by some of the Class C tests for chapter 14 of the Ada
Standard. The operation of REPORT and CHECKFILE is checked by a set
of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are
not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all
implementations in separate tests. However, some tests contain values
that require the test to be customized according to implementatior.-
specific values--for example, an illegal file name. A list of the
values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an
implementation is considered each time the implementation is validated.

Chapter 1 Page 5 of 6

INTRODUCTION

A test that is inapplicable for one validation is not necessarily
inapplicable for a subsequent validation. Any test that was determined
to contain an illegal language construct or an erroneous language
construct is withdrawn from the ACVC and, therefore, is not used in
testing a compiler. The tests withdrawn at the time of this
validation are given in Appendix D.

Chapter 1 Page 6 of 6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this vLlidation was tested under
the following configuration:

Compiler: VADS Version 5.5,

ACVC Version: 1.9

Certificate Number: 880714N1.09135

Host Computer:

Machine: SUN 3/50 Workstation

Operating System: SUN UNIX 4.2
Release 3.2

Memory Size: 4 Mbytes

Target Computer:

Machine: GEC 4195 Minicomputer

Operating System: OS4000
Release 4.17

Memory Size: 2 Mbytes

Communications Network: X25/X29 Colour Book Software

Chapter 2 Page 1 of 6

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behaviour of a compiler in those areas of the Ada Stanaard that
permit implementations to differ. Class D and E tests specificaiy
check for such imple-entation differences. However, tests in
other classes also characterize an -inmlenentatlon. The te t
demonstrate the following characteristics:

Capacities.

The compiler correctly processes tests containing loop
statements nested to 33 levels, block statements nested to 65
levels, and recursive procedures separately compiled as
subunits nested to 10 levels. It correctly processes a
compilation containing 723 variables in the same declarative
part. (See tests D55A03A..H (8 tests), D56001B, D64005E..G (3
tests), and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal
integer calculations having values that exceed
SYSTEM.MAX INT. This implementation processes 64 bit integer
calculations. (See tests D4AO02A, D4AO02B, D4AO04A, and D4AO04B.)

Predefined types.

This implementation supports the additional predefined
types SHORT INTEGER, SHORTFLOAT, and TINYINTEGER in the package
STANDARD. (See tests B86001C and B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERIC_EfROR during execution. (See
test E24101A.)

Expression evaluation.

Apparently some default initialization expressions for record
components are evaluated before any value is checked to belong
to a component's subtype. (See test C321!7A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

Chapter 2 Page 2 of 6

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range. (See
test C35903A.)

Sometimes NUMERICERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

Sometimes NUMERIC ERROR is raised when a literal operand in
a fixed-point comparison or membership test is outside the
range of the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round
round away from zero (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round away from zero. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round to even. (See test C4AO14A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAXINT components raises no exception.(See testC36003A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

NUMERICERiC is raised when 'LENGTH is applied to an array
type with '.r TEM.MAX_INT + 2 components. (See test C36202B.)

A packed P- EAN array having a 'LENGTH exceeding
INTEGER'L ST :aises NUMERIC ERROR when the array type is
declared. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERICERROR when the array type
is declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERICERROR when
the array type is declared. (See test E52103Y.)

Chapter 2 Page 3 of 6

CONFIGURATION INFORMATION

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning two-
dimensional array types, the expression does not appear to be
evaluated in its entirety before CONSTRAINTERROR is raised when
checking whether the expression's subtype is compatible with
the target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that is
used in an access type definition with a compatible discriminant
constraint. This implementation accepts such subtype
indications. (See test E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINTERROR is raised if
a bound in a nonnull range of a nonnull aggregate does not belong
to an index subtype. (See test E43211B.)

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C35502I..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C35507I..J,
C35507M..N, and C55B16A.)

Chapter 2 Page 4 of 6

CONFIGURATION INFORMATION

Enumeration representation clauses for boolean types
containing representational values other than (FALSE => 0,
TRUE => 1) are supported. (See tests C355081..J and
C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access
types are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are not supported.
(See tests A39005E and C87B62C.)

Record representation clauses are supported. (See test A39005G.)

Length clauses with SIZE specifications for derived integer
types are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is supported for procedures. The pragma
INLINE is supported for functions. (See tests LA3004A,
LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIAL_10 cannot be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C, EE2201D, and
EE2201E.)

The package DIRECT 10 cannot be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101H, EE2401D, and
EE2401G.)

The director, AJPO, has determined (AI-00332) that every call to
OPEN and CREATE must raise USE ERROR or NAMEERROR if file
input/output is not supported. This implementation exhibits this
behaviour for SEQUENTIALIO, DIRECTIO, and TEXTIO.

Chapter 2 Page 5 of 6

CONFIGURATION INFORMATION

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

Chapter 2 Page 6 of 6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler
was tested, 27 tests had been withdrawn because of test errors. The
AVF determined that 411 tests were inapplicable to this
implementation. All inapplicable tests were processed during
validation testing except for 201 executable tests that use
floating-point precision exceeding that supported by the
implementation and 174 executable tests that use file operations not
supported by the implementation. Modifications to the code,
processing, or grading for 139 tests were required to
successfully demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate
acceptable conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B C D E L

Passed 105 1049 1457 14 13 46 2684

Inapplicable 5 2 396 3 5 0 411

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 46 3122

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 190 498 540 243 165 98 141 326 137 36 234 3 73 2684

Inapplicable 14 74 134 5 1 0 2 1 0 0 0 0 180 411

Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

Chapter 3 page 1 of 6

TEST INFORMATION

3.4 WITHDRAWN TESTS

The following 27 Tests were withdrawn from ACVC Version 1.9 at the
time of this validation:

B28003A C35904A C37215C C41402A CCI IIB
C35904B C45332A

E28005C C35A03E C37215E C45614C BC3105A
C34004A C35A03R C37215G A74016C AD1A01A
C35502P C37213H C37215H C85018B CE2401H
A35902C C37213J C38102C C87B04B CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to
support. Others may depend on the result of another test that is
either inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not
necessarily inapplicable for a subsequent attempt. For this
validation attempt, 411 tests were inapplicable for the reasons
indicated:

C35702B uses LONGFLOAT which is not supported by this
implementation.

A39005E and C87B62C use length clauses with SMALL specifications
which are not supported by this implementation.

A39005G uses an array within a record, for which a record
representation clause has been stated in the declaration which
this compiler does not implicitly pack.

The following tests use LONGINTEGER, which is not supported by
this compiler:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45631C
C45632C B52004D C55B07A B55B09C

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit
fixed-point base types which are not supported by this compiler.

D55A03G...H (2 tests) use more than 33 levels of loop nesting
which exceeds the capacity of the compiler.

D64005G uses nested procedures as subunits to a level of 17 which
exceeds the capacity of the compiler.

Chapter 3 Page 2 of 6

TEST INFORMATION

*C8600lF redefines package SYSTEM, but TEXT_-10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT_10.

C96005B requires the range of type DURATION to be different from
those of its base type; in this implementation they are the same.

*AE2l0lC,, EE22O1D, and EE2201E use instantiations of package
SEQUENTIAL_-10 with unconstrained array types and record types
having discriminants without defaults. These instantiations are
rejected by this compiler.

*AE2lO1H, EE24OlD, and EE2401G use instantiations of package
DIRECT -10 with unconstrained array types and record types having
discrimninants without defaults. These instantiations are rejected
by this compiler.

*The following 174 tests are inapplicable because sequential, text
and direct access files are not supported.

CE2102C CE21O2G..H(2) CE21021(CE21O4A..D(4)
CE21O5A..B(2) CE2lO6A..B(2) CE21O7A..I(9) CE21O8A..D(4)
CE21O9A..C(3) CE211OA..C(3) CE2111A..E(5) CE2111G..H(2)
CE2l15A..B(2) CE22O1A..C(3) CE22O1F..G(2)
CE2204A..B(2 CE2208B CE2210A
CE24O1A..C(3) CE24O1E..F(2) CE2404A
CE2405B CE2406A CE2407A CE2408A
CE2409A CE2410A CE2411A AE3101A
CE3102B EE3102C CE3103A CE3104A
CE3107A CE3lOBA. .B(2) CE3109A CE3110A
CE3ll1A..E(5) CE3ll2A..B(2) CE3114A..B(2) CE3115A
CE3203A CE33O1A..C(3) CE3302A
CE3305A CE3402A..D(4) CE3403A..C(3) CE3403E..F(2)
CE3404A..C(3) CE3405A..D(4) CE3406A. .D(4) CE3407A..C(3)
CE3408A. .C(3) CE3409A CE3409C. .F(4) CE3410A
CE341OC..F(4) CE3411A CE3412A CE3413A
CE3413C CE3602A..D(4) CE3603A CE3604A
CE3605A..E(5) CE3606A..B(2) CE3704A..B(2) CE3704D..F(3)
CE3704M..O(3) CE3706D CE3706F CE3804A. .E(5)
CE3804G CE3804I CE3804K CE3804M
CE3BO5A..B(2) CE3806A CE3806D. .E(2) CE3905A. .C(3)
CE3905L CE3906A..C(3) CE3906E..F(2)

Results of running a subset of these tests showed that the proper

exceptions are raised for unsupported file operations.

Chapter 3 Page 3 cf 6

TEST INFORMATION

The following 201 tests require a floating-point accuracy that
exceeds the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of
code, processing, or evaluation in order to compensate for
legitimate implementation behaviour. Modifications are made by the AVF
in cases where legitimate implementation behaviour prevents the
successful completion of an (otherwise) applicable test. Examples of
such modifications include: adding a length clause to alter the default
size of a collection; splitting a Class B test into subtests so that
all errors are detected; and confirming that messages produced
by an executable test demonstrate conforming behaviour that wasn't
anticipated by the test (such as raising one exception instead of
another).

Modifications were required for 28 Class B tests, 109 Class C
tests, and 2 Class D tests.

Characterize the tests that needed modification. Where there are
several tests with the same characterizations, list them in five
columns. The names should be sorted in ascending order, but ignoring
the class, i.e., the first character.

The following Class B tests were split because syntax errors at one
point resulted in the compiler not detecting other errors in the test:

B24009A B24204A B24204B B24204C B25002A
B2AOO3A B2AO03B B2AO03C B33301A B36002A
B37201A B38003A B38003B B38009A B38009B
B41202A B44001A B64001A B67001A B67001B
B67001C B67001D B91001H B91003B B95001A
B97102A BC1303F BC3005B

The following 109 Class C tests and 2 Class D tests were modifiied in
order to compensate for the GEC 4195 Minicomputer target's 16K object-
module limit. These tests were modified by encapsulating sections of
the executable statements in separately compiled procedures which were
then called at the place of the statements. Test D64005G was ruled NA
as described in section 3.5 as a result of the behavior that was
exhibitted after modification; all other tests were successfully
executed. The AVO permitted this extensive modification of ACVC 1.9 and
ruled the tests passed.

C32001B.ADA C35A04A.ADA C37213E.ADA C46012C.DEP C64018A.ADA

Chapter 3 Page 4 of 6

TEST INFORMATION

C32001E.ADA C35A04N.ADA C37213F.ADA C46012D.DEP C67002C.ADA
C32107A.ADA C35A04Q.ADA C37213G.ADA C46012E.DEP C93003A.ADA
C32112A.ADA C35A06N.ADA C37213H.ADA C46012F.DEP C94002A.ADA
C32112B.ADA C35A07N.ADA C37213J.ADA C46012G.DEP C94002G.ADA
C34002A.ADA C35A070.ADA C37215E.ADA C46012H.DEP C94008C..DA
C34003A.ADA C36104B.ADA C37215F.ADA C460121.DEP C95008A.ADA
C34007D.ADA C36205A.ADA C37215G.ADA C46012J.DEP C95067A.ADA
C34007G.ADA C36205B.ADA C37215H.ADA C46012K.DEP C95084A.ADA
C34007P.ADA C36205C.ADA C41103B.ADA C46044B.ADA C95025C.ADA
C34007S.ADA C36205D.ADA C41203A.ADA C47007A.ADA C95087A.ADA
C34007U.ADA C36205E.ADA C41203B.ADA C48008A.ADA C95087B.ADA
C35502E.ADA C36205F.ADA C43103B.ADA C4AO1lA.ADA C95087D.ADA
C35503C.ADA C36205G.ADA C45111D.ADA C52102B.ADA C95089A.ADA
C35503E.ADA C36205H.ADA C45112A.ADA C52102C.ADA C96006A.ADA
C35507C.ADA C362051.ADA C45112B.ADA C52102D.ADA C9AOO8A.ADA
C35507E.ADA C36205J.ADA C45262A.ADA C61O1OA.ADA CCl221A.ADA
'C35507H.ADA C36205K.ADA C45282B.ADA C64005C.ADA CC1222A.ADA
C35508E.ADA C37006A.ADA C45503A.ADA D64005F0M.ADA CC1224A.ADA
C355081.ADA C37007A.ADA C45503B.DEP D64005G0M.ADA CC3601A.ADA
C35A03A.ADA C37213C.ADA C46012A.DEP C64106A.ADA CC36O1C.ADA
C35A03N.ADA C37213D.ADA C46012B.DEP C64106D.ADA CE3604A.ADA

CE3704F.ADA

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced
by the VADS Version 5.5 was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler
exhibited the expected behaviour on all inapplicable tests.

3.7.2 Test Method

Testing of the VADS Version 5.5 using ACVC Version 1.9 was conducted
on-site by a validation team from the AVF. The conf iguration
consisted of a SUN 3/50 Workstation host operating under SUN UNIX 4.2,
Release 3.2, and a GEC 4195 Minicomputer target operating under 0S4000
Release 4.17. The host and target computers were linked via X25/X29
Colour Book Software.

A magnetic tape containing all tests was taken on-site by the validation
team f or processing. Tests that make use of implementation-specif ic
values were customized before being written to themagnetic tape. Tests
requiring modifications during the pre- validation testing were rnot
included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded onto a VAX VMS 11/780
and then transferred via Ethernet onto the host computer.

Chapter 3 Page 5 of 6

TEST INFORMATION

After the test files were loaded to disk, the full set of tests
was compiled and linked on the SUN 3/50 Workstation, and all executable
tests were run on the GEC 4195 Minicomputer. Object files were linked
on the host computer, and executable images were transferred to the
target computer via X25/X29 Colour Book Software using a SUN 3/160 as a
filesaver. Results were printed from the host computer, with
results being transferred to the host computer via X25/X29 Colour Book
Software using a SUN 3/160 as a filesaver.

The compiler was tested using command scripts provided by GEC Software
Ltd and reviewed by the validation team. The compiler was tested using
all default option settings except for the following:

Option Effect

-el Errors interspersed into the source code

Tests were compiled, linked, and executed (as appropriate) using a 2 host
computers and a single target computer. Test output, compilation
listings, and job logs were captured on magnetic tape and archived at
the AVF. The listings examined on-site by the validation team were also
archived.

3.7.3 Test Site

Testing was conducted at GEC Software Ltd, 132-135 Long Acre, London WC2E
9AH and was completed on 15th July 1988.

-- ,--ar I Vpm A m A

APPENDIX A

DECLARATION OF CONFORMANCE

GEC Software Limited has submitted the following Declaration of
Conformance concerning the VADS Version 5.5.

Appendix A Page 1

DECLARATION OF CONFORY.NCE

DECLARATION OF CONFORMANCE

Compiler Implementor: GEC Software Ltd
Ada* Validation Facility: The National Computing Centre Limi.ted,

Oxford Rd, Manchester Ml 7ED
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: VADS Version 5.5
Host Architecture ISA: SUN 3/50 Workstation OS&VER 0: SUN UNIX 4.2

Release 3.2
Target Architecture ISA: GEC 4195 Minicomputer OS&VER *: OS4000,

Release 4.17

Implementor's Declaration

I, the undersigned, representing GEC Software Ltd, have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A
in the compiler(s) listed in this declaration. I declare that The
Verdix Corporation is the owner of record of the Ada language
compiler(s) listed above and, as such, is responsible for maintaining
said compiler(s) in conformance to ANSI/MIL-STD-1815A. All
certificates and registrations fcr Ada language compiler(s) listed in
this declaration shall be made only in the owner's corporate name.

IDate:
GEC Software limited
Anne Evetts Commercial Manager

*Ada is a registered trademark of the United States Government (Ada
Joint Program Office).

Appendix A Page 2

DECLXJA::ON OF CONFORIRANCE

Owner's Declaration

I, the undersigned, representing GEC Software Lt- in conjunction with
The Verdi: Corporation take full responsibility !-r the implementation
and maintenance of the Ada compiler(s) listed at:ve, and agree to the
public disclosu,-e cf the final Validation Summar." Report. I further
agree to continue to comply with the Ada trademark policy, as defined
by the Ada Joint Program Office. I declare iat all of the Ada
language compilers listed, and their host/targe: performance, are in
compliance with the Ada Language Standard ANSI/MII-STD-1815A.

_ _-__ _-___ _ _ _ _ _ _ _ Date: -
GEC So-eware t
AnnE Evetts Commercial Manager

Appendix A Page 3

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the VADS Version 5.5, are
described in the following sections, which discuss topics in
Appendix F of the Ada Standard. Implementation-specific portions
of the package STANDARD are also included in this appendix.

Appe-idix B Page 1

APPENDIX F: Inplimentation Dependent Characteristics.

1. Implimentation Dependent Pragmas.

1.1 INLINEONLY Pragma

The INLINEONLY pragma, when used in the same way as pragma INLINE, indicates to
the compiler that the subprogram must always be inlined. This pragma also suppresses the

generation of a callable version of the routine which save code space.

1.2 BUILT IN Pragma

The BUILT IN pragma is used in the implementation of some predefined Ada packages, but
provides no user access. It is used only to impJemeni code bodies for which no actual Ada

body can be provided, for example the MACHINE_CODE package.

1.3 SHARECODE Pragma

The SHARE CODE pragma takes the name of a generic instantiation or a generic unit as the
first argument and one of the indentifiers TRUE or FALSE as the second argument. This
pragma is only allowed immediately, at the place of a declarative item in a declarative part or

package specification, or after a libary unit in a compilation, but before any subsequent
compilation unit.

When the first argument is a generic unit the lragma applies to all instatiations of that
generic. \When the first argument is the name of a generic instantiation the pragma implies
only to the specified instantiation, or overloaded instantiations.

If tile second argument is TRUE the compiler will try to share code generated for a generic
instantiation with code generated for other instantiations of the same gei . nen the
second argument is FALSE each instatiation will get a unique copy of the generated code.
The extent to which code is shared between instatiations depends on this pragma and the
kind of generic formal parameters declared for the generic unit.

The name pragma SHARE BODY is also recognized by the implementation and has the

same effect as SHARECODE. It is ir.cluded for compatibility with earlip- versions o! \'ADS.

1.4 NO IMAGE Pragma

The pragma supresses the generation of the iniage array used for tile IMAGE attribute of

enumeration types. This eliminates the overhead required to store the array in the executable
image.

1.5 EXTERNALNANIE Pragma

The EXTERNALNAME pragma takes the name of the subprogram or variable defined in

Ada and allows the user to specify a different external name that may be used to reference

the entitity from other languages. The pra,'ma is allowed at the place of a declarative item in

a specification and must apply to an object declared earlier in the same package

specification.

1.6 INTERFACEOBJECT Pragma

The INTERFACEOBJECT pragma takes the name of a variable defined in another

language and allows i:, to be referenced directly in Ada. The pracma will replace all

(,ccurrences of the \'ariable name with an external reference to the second, linkargument.

Trie prapma is aliowed at the place of a declarative item in a package specification and must

zpply to an object declared earlier in the same package specification. The object must be

declared as a scalar or an access type. The object cannot be any of the followng:

a loop variable,
a constant,

an initialized variable,
an array, or

a record.

1.7 IMPLICITCODE Pragma

Takes one of the identifiers ON or OFF as the single argument. This pragma is only allowed

within a machine code procedure. It specifies that implicit code generated by the compiler to

be allowed or disallowed. A warning is issued if OFF is used and any implicit code needs to

be generated. The default is ON.

2. Implementation of Predefined Pragmas.

2.1 CONTROLLED

This pragma is recognized by the implementation but has no effect.

.. 2 LLAIOI.A'L

This pragma is implemented as described in Appendix B of the ADA LRM.

2.3 INLINE

This pragma i, implemented as described in Appendix B of the ADA LRM.

2.4 INTERFACE

This pragma supports calis to BABBAGE via the unchecked Interface.

2.5 LIST

This pragma is implemented as described in Appendix B of the ADA LRM.

2.6 MEMORYSIZE

This pragma is recognized by the implementation. The implementation does not allow

SYSTEM to be modified by means of pragmas, the SYSTEM package must be recompiled.

2.7 OPTIMIZE

This pragma is recognized by the implementation but has no effect.

2.8 PACK

This pragma will causte the compiie to, choo,- . r-ohrcc rcprscrtotior. for con-posic

types. It will not cause objects to bt. pack , ' h:' i..vc.

2.9 PAGE

This pragma is implemented as described ii .ppencix [L o: it ADA LRM.

2.10 PRIORITY

This pragma is implemented as described in Appendix B of the ADA LRM.

2.11 SHARED

This pragma is recognized by the implementation but has no effect.

2.12 STORAGE UNIT

This pragma is recognized by the implementation. The implementation does not allow
SYSTEM to be modified by means pragmas, the SYSTEM package must be recompiled.

2.13 SUPPRESS

This pragma is implemented as described, except that RANGE-CHECK and
DIVISIONCHECK cannot be suppressed.

2.14 SYSTEMNAME

Th ro.e, is recognized by the e e r.:. The impiementation does no alilow

SYSTEM to be modifiecd by means of pra:; th! S' STLM package must be recompliie.

3 Implementation Dependent Attributes

3.1 P'REF

For a prefix that denotes an object, a program unit, a lable, or an entry:

This attribute denotes the effective address of the firs, of the storage units allocated to P. For
a subprogram, package, task unit, or label, it relers to the address of the machine code
associated with the corresponding body or st.ten. For an entry for which and address
clause has been given, it refers to the corresportchr.1bodv cr statement. The attribute is of
the type OPERAND defined in the package MACHINECODE. The attribute is onl\
allomed within a machine code procedure.

See section F.4.8 for more informazion on 'l, uc o ths a'tribute.

(For a package, task unit, or entry, the 'REF attribute is not supported.)

4. Specification of Package SYSTEM

package SYSTEM
is
type NAME Is (SUN-CROSS_41XX 1
SYSTEM-NAME constant NAME := SUN CROSS 41 XX;

STORAGE-UNIT :constant 8;
MEMORY-SIZE :constant 16777216;
-- System-Dependent Named Numbers
MIN.JNT constant :=-2 147483_648;
MAX INT constant :=2147483647;

MAX-DIGITS :constant :~15;
MAX-MANTISSA constant 31;
FINE-DELTA constant :=2.0'*(-31);

TICK :constant :=0.01;

-- Other System-dependent Declarations
subtype PRIORITY Is INTEGER range 0 .. 99;

MAXRECSIZE :Integer := 10*1024;
type ADDRESS Is private;
NO-ADDA : constant ADDRESS;
function PHYSICAL ADDRESS(I: INTEGER) return ADDRESS;
function ADDRGT(A, B: ADDRESS) return BOOLEAN;
function ADDRLT(A, B: ADDRESS) return BOOLEAN;
function ADDRGE(A, 8: ADDRESS) return BOOLEAN;
function ADDRLE(A, B: ADDRESS) return BOOLEAN;
function ADDR DIFF(A, B: ADDRESS) return INTEGER;
function INCR ADDR(A: AISS NCR: INTEGER) return ADDRESS;
function DECR ADDR(A: ADDRESS; DECR: INTEGER) return ADDRESS;
function ">"(A, B: ADDRESS) return BOOLEAN renames ADORGT;
function "<*(A, B: ADDRESS) return BOOLEAN renames ADDRLT;
function ">="(A, B: ADDRESS) return BOOLEAN renames ADDRGE;
function "<--"(A, B: ADDRESS) return BOOLEAN renames ADDRLE;
function "-" (A, 8: ADDRESS) return INTEGER renames ADDR-DIFF;
function "+"(A: ADDRESS; INCR: INTEGER) return ADDRESS renames INCR-ADDR;
function "-" (A: ADDRESS; DECR: INTEGER) return ADDRESS renames DECR_ADOR;

pragma Inflne(ADDRGT);
pragma Inline(ADDRLT);
pragma Inline (ADDRGE);
pragma Inline(ADDRLE):
pragma inline(ADDRDIFF);
pragma Inline(INCRADDR):
pragma Inline(DECR_.ADDR);
pragma Inline(PHYSICALADDRESS);

private
type ADDRESS is new integer;
NO-ADDR : constant ADDRESS :0;

end SYSTEM;

5 Restrictions on Reprentation Clauses

5.1 Pragma PACK

.rra cmniponenLs less t;an STORAGE _ UNIT bits are packed to the next highest power of 2

bLs. ObJects and iareer components are packed to the nearest whole STORAGEUNIT. In
t;,c absence o, i&api. PACK record components are padded so as to provide for efficient
access b\ the target hardware, prama PACK has no other effect. On the storage allocation

for record components, a record representation clause is required.

5.2 Length Clauses

Length Clauses are not supported.

5.3 Enumeration Representation Clauses

Enumeration Representation Clauses are supported.

5.4 Record Representation Clauses

For scalar types a representation clause willpack to the number of bits required to represent
the range of the subtype. A record representation applied to a composite type will not cause
the object to be packed to fit in the space required. An explicit represantation clause must be
given for the component type. An error will be issued if there is insufficient space allocated.

';. Address Clauses

Address clauses are supported for variables and constants.

5.6 Interrupts

Interrupt entries are not supported.

5.7 Representation Attributes

The ADDRESS attribute is not supported for the following entries:

Packages,
Tasks,

Labels,

Entries.

5.8 Machine Code Insertions

Machine code insertions are supported.

The general definition of the package MACHINECODE provides an assembly language
interface for the target machine. It provides the necessary record type(s) needed in the code

statement, an enumeration type of all the opcode mnemonics, a set of register definitions and

a set of addressing mode functions.

The general syntax of a machine code statement is as follows:

CODE_n'(opcode, operand);

For those opcodes that require no operands, named notation must be used (cf. LRM

4.3(d)).

CODE_0'(OP => opcode).

The opcode must be an enumeration literal (i.e., it cannot he ar, obiect. attrinute. oT a
rename).

An operand can only be an entity defined in the 'VIACHINE CODE or the 'REF atirmure.

The arguments to any of the functions defined in MACHINECODE must be static

expressions, string literals, or the functions defined in MACHINE-CODE. The 'REF

attribute may not be used as an argument in any of these functions.

Inline expansion of machine code procedures is supported.

6. Conventios for Implementation-generated Names

There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses

Address clauses are supported for constants and variables.

8. Restrictions on Unchecked Conversions

None.

9. Restrictions on Deallocations

None.

10. Implementation Characteristics of I/O Packages

We do not support DIRECT_10;
We do not support SEQUENTIAL_10;

We do not support any File 10 in TEXT_10.

11 Implementation Limits

The following limits are actually enforced by implementation. It is not intended to imply that

resources up to or even near these limits are available to every program.

11.1 Line Length

The implementation supports a maximum line length of 500 characters including the end of
line character.

11.2 Record and Array Sizes

The maximum size of a statically sized array type is 16,000 STORAGE UNITS. The

maximum size of a statically sized record type is 16,000 STORAGEUNITS. This is the

value returned by T'STORAGESIZE for a task type T.

11.3 Default Stack for Tasks

In the absence of an explicit STORAGE SIZE lenth attribute the default collection size for
an access type is 16,000 STORAGE UNITS. This is the value returned by

T'STORAGESIZE for a task type T.

11.4 Default Collection Size

In the absence of an explicit STORAGE SIZE length attribute the default collection size for

an access type is 16,000 STORAGE UNITS. This is the value returned by

T'STORAGE SIZE for an access type T.

11.5 Limit on Declared Objects

There is an absolute limit of 16,000 STORAGE UNITS for objects declared statically %0thin

a compilation unit. If this value is exceeded the compiler will terminate the compilation with

FATAL error message.

11.6 Limit on Compilation Unit Size

There is an absolute limit of 16,384 STORAGE UNITS for the compilation object size. If

this value is exceeded the compiler will terminate with LIMIT error message. 12 Standard

specifications

12 IN STANDARD PACKAGE

type S)IORTINTEGER <16 - bit. word integer>;

type INTEGER <32 - bit, long word intcger>;

Srr0ET_rLOAT < 6 - di'it, 3: - bit, fiont>;

type I LOAT <16 - dig;i. 64 - bit, float>;

type DURATION <delta 2.0*'(-31) range -2147483.648 .21474a3.647>;

12.1 Attributes of types in STANDARD

SHORTFLOAT

MACHINERADIX 16

MACHINEMANTISSA 6

MACHINEEMAX 63

MACHINEEMIN -64

MACHINE_ROUNDS TRUE

MACHINEOVERFLOWS TRUE

SIZE 32
FIRST -I, 1579208233SS6984863.+77

LAS
T

7.2370051459731155396 E+75

DIGITS 6

MANTISSA 21

EPS!LON 9. 53674316406250000000E-07

EMAX 84

SMALL 2.5849394142282114840 E-26

LARGE 1.9342803890462029941 E+25

SAE.E_EMAX 252

SAFE-SMALL 6. 9089348440755557003 E-77

SAFE_LARGE 7.237005145973115S396 E*75

FLOAT

MACHINE R A iX 1i

MACHINE MANTISS- 14

MACHIN EEMA),

MACHINEEM--6

MACHI-NE RCJZJ TU'

MACHINE 'OTFC)"'$- TRkJ

S;Z: 64

FIRST -1 1579208923731619382 E.77

LAST 7.2370055773322620131 E+75

DIGITS 15

MANTISSA 51

EPSILON 8. 8817641970012523239 E-16

EMAX 204

SMALL 1.9446922743316067835 E-62

LARGE 2.5711008708143832991 E+61

SAFEEMAX 252

SAFE_SMALL 6. 9089348440775557003 E-77

SAFE-LARGE 7.2370055773322620131 E+75

DURATION

SIZE 32

FIRST -2147483.648

LAST 2147483.647

DELTA 1. 00000000000000E-03

MANTISA 32

SMALL 9. 76562500000000E -04

LARGE 4.19430399902343E+06

FORE 8

AFT 3

SA: _SMr,4ALL 9.7656250000000OE-0-

SAFE LARGE 4 .1 9430399902343E+06

MACHINE-ROUNDS TRUE

MACHNr 'E OVERFLO WS TRUE

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the e 'te[:sion .TST
in its file name. Actual values to be substituted are represented
by names that begin with a dollar sign. A value must be sunstituted
for each of these names before the test is run. The values
used for this validation are given below.

NameandMeaning Value

$BIG IDI A Al
Identifier the size of the I ---- I
maximum input line length with 498 characters
varying last character.

$BIGID2 A A2
Identifier the size of the I ---- I
maximum input line length with 498 characters
varying last character.

$BIG ID3 A A3A A
Identifier the size of the I ---- I I ---- I
maximum input line length with 248 250
varying middle character. characters

$BIG ID4 A A4A A
Identifier the size of the I ---- I I ---- I
maximum input line length with 248 250
varying middle character. characters

$BIGINT LIT 0 0298
An integer literal of value 298 1 ---- I
with enough leading zeroes so 496 zeroes
that it is the size of the
maximum line length.

$BIG REAL LIT 0 0690.0
X universal real literal of I ---- I
value 690.0 with enough leading 494 zeroes
zeroes to be the size of the
maximum line length.

$BIG STRING1 "A A"
A string literal which when I ---- I
catenated with BIG STRING2 250
yields the image of BIGIDl. characters

C-I

NameandMeaning Value

$BIGSTRING2 "A AI"
A string literal which when I ---- I
catenated to the end of 248
BIG STRING1 yields the image of characters
BIGIDl.

$BLANKS 479 blanks
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 2_147_483_647
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$FIELD LAST 2_147_483_647
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FILE NAME WITH BAD CHARS INVALID
An external -file name that
either contains invalid
characters or is too long.

$FILE NAME WITH WILD CARD CHAR .TOOLONGNAME

An external file name that
either contains a wild card
character or is too long.

$GREATERTHAN DURATION 75000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER THAN DURATIONBASE LAST 2147483647.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGALEXTERNAL FILE NAME1 INVALID
An external file name which
contains invalid characters.

$ILLEGALEXTERNAL FILE NAME2 .TOOLONGNAME
An external file name which
is too long.

C-2

NameandMeaning _Value

$INTEGERFIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGERLAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS 1 2147483648
A universal integer literal
whose value is INTEGER'LAST + 1.

SLESS THAN DURATION -75000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS THAN DURATION BASE FIRST 2147483648.0
A-universal real literal that is
less than DURATION'BASE'FIRST.

SMAXDIGITS 15
Maximum digits supported for
floating-point types.

$MAXINLEN 499
Maximum input line length
permitted by the implementation.

$MAXINT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINTPLUS_1 2147483648
A universal integer literal
whose value is SYSTEM.MAXINT+I.

$MAX LEN INT BASED LITERAL 2:0 011:
A universal integer based I ---- I
literal whose value is 2WIi# 494 zeroes
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAXLEN REAL BASEDLITERAL 16:0 OF.E:
A universal real based literal ---- I
whose value is 16:F.E: with 492 zeroes
enough leading zeroes in the
mantissa to be MAXINLEN long.

C-3

NameandMeaning Value

$MAX STRING LITERAL "A A"
A string literal of size i ---- I
MAXINLEN, including the quote 497
characters. characters

$MIN INT -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

$NAME TINYINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONGFLOAT, or LONG-INTEGER.

$NEG BASED INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 27 tests had been withdrawn at the
time of validation testing for the reasons indicated. A reference of
the form "AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) wrongly follows a later
declaration.

E28005C: This test requires that 'PRAGMA LIST (ON);' not appear in a
listing that has been suspended by a previous "pragma LIST
(OFF);"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ALMP.

C34004A: The expression in line 168 wrongly yields a value outside of
the range of the target T, raising CONSTRAINTERROR.

C35502P: The equality operators in lines 62 and 69 should be
inequality operators.

A35902C: Line 17's assignment of the nominal upper bound of a fixed
point type to an object of that type raises CONSTRAINT ERROR
for that value lies outside of the actual range of the type.

C35904A: The elaboration of the fixed-point subtype on line 28 wrongly
raises CONSTRAINT_ERROR, because its upper bound exceeds that
of the type.

C35904B: The subtype declaration that is expected to raise
CONSTRAINTERROR when its compatibility is checked against
that of various types passed as actual generic parameters,
may in fact raise NUMERIC ERROR or CONSTRAINTERROR for
reasons not anticipated by the test.

C35A03E: This test assumes that attribute 'MANTISSA' returns 0 when
applied to a fixed-point type with a null range, but the Ada
Standard doesn't support this assumption.

C35A03R: This test assumes that attribute 'MANTISSA' returns 0 when
applied to a fixed-point type with a null range, but the Ada
Standard doesn't support this assumption.

Page 1 of 3

WITHDRAWN TESTS

C37213H: The subtype declaration of SCONS in line 100 is wrongly
expected to raise an exception when elaborated.

C37213J: The aggregate in line 451 wrongly raises CONSTRAINTERROR.

C37215C: Various discriminant constraints are wrongly expected to be
C37215E: nco..patible with type CONS.
C37215G:
C37215H:

C38102C: The fixed-point conversion on line 3 wrongly raises
CONSTRAINTERROR.

C41402A: 'STORAGESIZE' is wrongly applied to an objecc of an access
type.

C45332A: The test expects that either an expression in line 52 will
raise an exception or else MACHINE OVERFLOWS is FALSE.
However, an implementation may evaluate the expression
correctly using a type with a wider range than the base type
of the operands, and MACHINEOVERFLOWS may still be TRUE.

C45614C: REPORT IDENT INT has an argument of the wrong type
(LONGINTEGER).

A74016C: A bound specified in a fixed-point subtype declaration lies
C85018B: outside that calculated for the base type, raising
C87B04B: CONSTRAINT ERROR. Errors of this sort occur re lines 37 and
CCI311B: 59, 142 and 143, 16 and 48, 252 and 253 of the four tests

respectively (and possibly elsewhere).

BC3105A: Lines 159..168 are wrongly expected to be incorrect; they are
correct.

ADlA01A: The declaration of subtype INT3 raises CONSTRAINTERROR for
implementations that select INT'SIZE to be 16 or greater.

CE2401H: The record aggregates in lines 105 and 117 contain the wrong
values.

CE3208A: This test expects that an attempt to open the default output
file (after it was closed) with mode IN FILE raises
NAMEERROR or USEERROR; by Commentary AI-00048, MODEERROR
should be raised.

Page 2 of 3

